
29

Multi-Objective Optimization for Ensemble of Models Aljahdali
 1

Multi-Objective Optimization for Ensemble of
Models in Software Reliability Prediction

Sultan H. Aljahdali

College of Computers and Information Systems, Taif University
Taif, Saudi Arabia

E-Mail: aljahdali@tu.edu.sa

ABSTRACT

Software reliability models are very useful to estimate the probability of the
software fail along the time. Several different models have been proposed to
predict the software reliability growth models (SRGM) however; none of them
has proven to perform well considering different project characteristics. The
variability of predictive accuracy seems mainly due to the unrealistic
assumptions in each model, there is no single model yet available has been
shown to be sufficiently trustworthy in most or all applications. Genetic
Algorithms can proposed the solution by overcome the uncertainties in the
modeling. This is dependent on the successful software runs by combining
multiple models using multiple objective function to achieve the best
generalization performance where. The objectives are conflicting and no
design exists which can be considered best with respect to all objectives. In
this paper, experiments were conducted to confirm these hypotheses. Then
evaluating the predictive capability of the ensemble of models optimized using
multi-objective GA has been calculated. Finally, the results were compared
with traditional models.

Keywords: genetic algorithms, multi-objective, software reliability, prediction,

Pareto solution, ensemble

1- INTRODUCTION

Reliability in the general engineering sense, is the probability. It gives
component or system in a define environment will operate correctly for a
specified period of time. Since the software systems permeate every corner of
modern life, and any failure of those systems impacts us. An important issue
in developing such software systems is to produce high quality software
system that satisfies user requirements. As part of the software engineering
process, developers attempt to gauge the reliability of their software, and
compare the current level of reliability with the past history of that software. If
a software system is experiencing fewer failures as time goes on. The
reliability of that system is said to be growing. Answering two questions of
when the software should be shipped, and what its reliability will be at that
time are based on the use of software reliability models. The basic
assumption in software reliability modeling is that software failures are the
result of a stochastic process, having an unknown probability distribution.
Software reliability models specify some reasonable form for this distribution,
and are fitted to data from a software project. Once a model demonstrates a

30

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

good fit to the available data, it can be used to determine the current reliability
of the software, and predict the reliability of the software at future times. The
problem is that software systems are so complex such that software
engineers are not currently able to test software well enough to insure its
correct operation. This may be due to the assumptions made by various
software reliability models, or due to there is dependence among successive
software runs. The stochastic dependence of successive software runs also
depends on the extent to which internal state of software has been affected
and on the nature of operations undertaken for execution resumption [17, 11].
Addressing these problems is:

1. By finding mechanisms or relationships to more accurately determine
the quality of software systems, without visiting a large fraction of their
possible states.

2. Taking in consideration the failure correlation and;

3. Considering there is no single model sufficiently trustworthy in most or
all applications

Recently many ways of using parametric models, nonlinear time series
analysis and data mining to model software reliability and quality have been
investigated. These investigations point the way towards using computational
intelligence technologies to support human developers in creating software
systems by exploiting the different forms of uncertainty present in a software
system results from infrequent and unpredictable occurrence of human errors
and incomplete or imprecise data, in order to model complex systems and
support decision making in uncertain environments [8]. These computational
intelligence methods are evolving collections of methodologies, which adopt
tolerance for imprecision, uncertainty, and partial truth to obtain robustness,
tractability, and low cost. Fuzzy logic, neural networks, genetic algorithm,
genetic programming and evolutionary computation are the most important
key methodologies.

In this paper we propose a software reliability modeling framework, based on
genetic algorithms, as one of the computational intelligence techniques for
software reliability prediction which is capable of solving the three problems
listed previously by incorporating the possible dependence among successive
software run and use ensemble of forecasting models by developing methods

for estimating the model(s) parameters with multiple and competing objectives,
through the framework of GA optimizing.

The rest of the paper is organized in the following manner. In Section 2, the
genetic algorithms that will be applied in this paper are described briefly. In
section 3 and 4, we provide an overview of various SRGM and the data set
which we will be used in this paper. Detailed experiments results are provided
in section 5. Section 6, a brief review of the works carried out in the area of
software reliability prediction in research is presented. Finally, Section 7
concludes the paper.

31

Multi-Objective Optimization for Ensemble of Models Aljahdali
 3

2- GENETIC ALGORITHMS

Genetic algorithms are machine learning and optimization schemes, much
like neural networks. However, genetic algorithms do not appear to suffer
from local minima as badly as neural networks do. Genetic algorithms are
based on the model of evolution, in which a population evolves towards
overall fitness, even though individuals perish. Evolution dictates that superior
individuals have a better chance of reproducing than inferior individuals, and
thus are more likely to pass their superior traits on to the next generation. This
“survival of the fittest” criterion was first converted to an optimization algorithm

by Holland in 1975 [14], and is today a major optimization technique for

complex, nonlinear problems. In a genetic algorithm, each individual of a
population is one possible solution to an optimization problem, encoded as a
binary string called a chromosome. A group of these individuals will be
generated, and will compete for the right to reproduce or even be carried over
into the next generation of the population. Competition consists of applying a
fitness function to every individual in the population; the individuals with the
best result are the fittest. The next generation will then be constructed by
carrying over a few of the best individuals, reproduction, and mutation.
Reproduction is carried out by a “crossover” operation, similar to what
happens in an animal embryo. Two chromosomes exchange portions of their

code, thus forming a pair of new individuals. In the simplest form of crossover,
a crossover point on the two chromosomes is selected at random, and the
chromosomes exchange all data after that point, while keeping their own data
up to that point. In order to introduce additional variation in the population, a
mutation operator will randomly change a bit or bits in some chromosome(s).
Usually, the mutation rate is kept low to permit good solutions to remain

stable. The two most critical elements of a genetic algorithm are the way
solutions are represented, and the fitness function, both of which are problem-
dependent. The coding for a solution must be designed to represent a
possibly complicated idea or sequence of steps. The fitness function must not
only interpret the encoding of solutions, but also must establish a ranking of
different solutions. The fitness function is what will drive the entire population
of solutions towards a globally best [10]. Figure 1 illustrates the basic steps in
the canonical genetic algorithms.

Most GAs has been used for single objective problems, although several
multi-objective approaches have been proposed. There are three different
approaches to cope with multi-objective problems, namely: 1) transforming
the original multi-objective problem into a single objective problem by using a
weighted function, 2) the lexicographical approach, where the objectives are
ranked in order of priority, and 3) the Pareto approach which consists of as
many non-dominated solutions as possible and returning the set of Pareto
front to the user. The main conclusions are that the weighted formula
approach, which is by far the most used in the data mining literature, is an ad-
hoc approach for multi-objective optimization, whereas the lexicographic and
the Pareto approaches are more principled approaches, and therefore
deserved more attention from the data mining community[7].

32

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

3- PREDICTING MODELS

In the past three decades, hundreds of models were introduced to estimate
the reliability of software systems [32, 33]. The issue of building growth
models was the subject of many research works [20] which helps in
estimating the reliability of a software system before its release to the market.
There appears to be three major trends in software reliability research: the
use of Non-Homogeneous Poisson Process (NHPP) models, Bayesian
inference, and time series analysis. An NHPP is a Poisson process with a
time-varying mean value function. Bayesian inference in software reliability
models essentially consists of treating the parameters of a reliability model as
random variables instead of constants to be estimated. Some reasonable
prior distributions are assumed for these parameters, and Bayes’ theorem is
then invoked to determine the posterior distributions using reliability data.
Finally, time series analysis uses an auto-regressive process and an auto-
regressive integrated moving average (ARIMA) model. In addition to these
three large-scale trends, there are many other proposing software reliability
models that are somewhat unique. In this paper, the auto-regression models
are adopted.

Figure 1 the canonical GA algorithm.

33

Multi-Objective Optimization for Ensemble of Models Aljahdali
 5

3-1 REGRESSION MODEL

A time series is a time-ordered sequence of observation values of a physical
or financial variable made at equally spaced time intervals , represented as

a set of discrete values , , ,…, etc. Time series analysis deals with the

problems of identification of basic characteristic features of time series, as
well as with discovering - from the observation data on which the time series
is built - the internal time series structure to predict time series data values
which help in deciding about the subsequent actions to be taken. One of most
used times series models is the auto regression model. Much of the appeal of
this technique lies with its simplicity and also its easy accessibility from many
of the popular statistical packages. The AR model can be described by the
following equation:

 (1)

where is the previous observed number of faults and . The

value of n is referred to as the "order" of the model, and are

the model parameter.

3-2 MULTIPLE REGRESSION MODEL

Stochastic uncertainty that arises because faults occur during the software
testing process can behave in many different unpredictable ways and is thus
a property of reality. Reducing reality into a model inevitably results in an
error, reflecting the discrepancies between the reality portion of interest and
its model representation. These errors can be associated with the structure of
the model stemming from simplifications, assumption and approximations or
due to uncertainties in the values assumed by the model parameters or due to
errors in the measurement process itself. This error can be viewed as a
measure of how good a model is in representing reality. Machine learning
algorithms, proposed the solution by combining multiple models, we are
aiming at a more accurate prediction at the expense of increased uncertainty
[9]. The fusion approach, that will be applied combine such as the average
predictions of multiple models. Mathematically, the ensemble models can be
described by the following equation:

 (2)

where is the prediction of the model about a reality aspect of interest,

represents the model’s structure reflecting a set of assumptions and

simplifications encoded into the mathematical model , and

 is a finite set of model parameters. In a general case of a

discrete set of n models , each model represents an

alternate form of with given set of parameters . Each model in the set

34

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

 provides an estimate about the quantity of interest in the form of a

predictive probability distribution . The literature on

combining methods is very reach and diverse, among the methods: the
simple averaging (equal weights) and the weighted average [12]. In this study,
the combination function is implemented both the schemes, equation 3,

represent the average predictions of multiple models and equation 4,
represent the weighted average predictions of multiple models.

 (3)

 (4)

4- PROBLEM FORMULATION

The standard method of performing time series prediction problem can be
formulated within the supervised machine learning frameworks as the
following two cases:

Case 1: Given a set of examples, where , return

a function that approximates in the sense that the norm of the error vector

 is minimized, where each is defined as and

is an arbitrary error function.

Case 2: Given a set of examples, where , return

functions that its combination function

approximates in the sense that the norm of the error vector is

minimized, where each is defined as and is an

arbitrary multi-objective function.

The parameters of any model can be thought as the genes vector or sub-
vector of the chromosome in the GA. The parameters of each chromosome
vector are initialized randomly and are evolved using GA algorithm. The
fitness function that determines the quality of population members is a

multi-objective function that optimizing several performance index: The value
of normalized root mean square error (NRMSE) and Correlation Coefficient

() between the observed and forecasted failures. The correlation

coefficient, measures the percentage of variation in the dependent
variable that is explained by the regression or trend line. It has a value
between zero and one, with a high value indicating a good fit.

35

Multi-Objective Optimization for Ensemble of Models Aljahdali
 7

!

NRMSE =
1

m "1

y j "# g
1
u j(),g2 u j(),…()()

2

j

m

$

y j()
2

j

m

$
 (5)

!

R
2 =

" g
1

u j(),g2 u j(),…() # y ()
2

j

m

$

y j # y ()
2

j

m

$
 (6)

The objective is to carefully ensemble the different forecasting models to
achieve the best generalization performance. This task is to have minimal

values of NRMSE and a maximum value for . This problem is equivalent to
finding the Pareto solutions of a multi-objective optimization problem. A
Pareto-optimal solution has the property that it is not possible to reduce any of
the objective functions without increasing at least one of the other objective
functions. The most straightforward approach to multi-objective optimization is
combine all the objectives into a single one using either an addition,
multiplication or any other combination of arithmetical operations that we
could devise [6]. Where

 (7)

This approach is not computationally intensive and results in a single best
solution based on the assigned weights.

5- EXPERIMENTS RESULTS

This section describes the data used and the measurements adopted to
evaluate the obtained GA model. We also present the main steps followed to
configure the GA algorithm. This experiment explored GA models based on
time. This is easily achieved with an appropriate terminal set. This terminal
set is compound by past accumulated failures.

5-1 SOFTWARE RELIABILITY DATA SET

John Musa of Bell Telephone Laboratories compiled a software reliability
database [19]. His objective was to collect failure interval data to assist
software managers in monitoring test status, predicting schedules and to
assist software researchers in validating software reliability models. These
models are applied in the discipline of software reliability engineering. The
dataset consists of software failure data on 16 projects. Careful controls were
employed during data collection to ensure that the data would be of high
quality. The data was collected throughout the mid 1970s. It represents

36

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

projects from a variety of applications including real time command and
control, word processing, commercial, and military applications. The failure
data consists of: project identification, failure number; time between failures
(TBF), and day of occurrence. In our case, we used data from three projects.
They are Military, Real Time Control and Operating System.

5-2 REGRESSION MODELS STRUCTURES AND TRAINING

We implemented the standard genetic algorithms using MATLAB with binary
representations where the population contains a set of represented model(s)
parameters. Hence, a chromosome is a set of parameters, where each
parameters represented by 10 bits. The parameters take the values between
[0, 1]. Initial chromosomes are generated by random bit strings. The
architecture of the regression model used for prediction the software reliability
is modeled as in Equation 1; with . For multiple models we combine the

three models with . The chosen orders of AR models are simples to

implement the principles of parsimony. The goal of the genetic algorithm is to
naturally select using roulette wheel selection technique, the model(s) that
better solves a predication problem using fitness function as in Equation 5.
We use the conventional genetic operators to produce new generation of
population of chromosomes from current generation. The genetic algorithms
are learned to estimate the models parameters and their combining weights.
The trainings accomplish by dividing the data set into two sections, training
and test sets, comprising of 70% and 30% of the total data set respectively.
So, we took the first 96 data points for training and the next 40 points for
validation and test. The GA training algorithms are conducted several pre-
experiments to determine the parameters setting per algorithm that yields the
best performance with respect to the dataset. These parameters are values
are shown in Table 1.

Table 1 the GA parameters used in this study

Parameter Value

Population Size 25

Number of generations 1000

Crossover rate 0.6

Mutation rate 0.05

Selection method tournament selection

5-3 EXPERIMENTAL EVALUATION

The training data from real time control and their predicted results from
different model are shown in Figures 2 and the predicted squared error in
Figure 3. The forecasted and actually measured values where compared to
verify the generated models by GA learning algorithm. From this figure it can
be observed that the weighted average ensemble of models forecast more
closely to the actual values than other modeling methodologies in most of the
testing time period. The results of runs on this case study training data set
summarized in Table 2 in terms of multi-objective function. According to
results shown in Table 2; the ensemble of models are better than the single

37

Multi-Objective Optimization for Ensemble of Models Aljahdali
 9

model and the variation between the weighted average and average
combination of ensemble is minor. The above results show that AR ensemble
models performance can be very dependent on the ability of optimization
algorithms to find a good set of parameters. The better performance can be
illustrated by showing the learning curves of the parameters of the proposed
methodology as shown in Figures 4.

Table 2 the comparison among single and ensemble of models learned using GA for

training data set

Training Data Set

NRMSE R
2

single model 3.87e-6 0.93
average ensemble 3.46e-6 0.99

weighted average ensemble 3.44e-6 0.99

Table 3 the comparison among single and ensemble of models learned using GA for
testing data set

Testing Data Set

NRMSE R
2

single model 4.11e-6 0.97
average ensemble 2.79e-6 0.98
weighted average ensemble 2.66e-6 1.00

The test data from real time control and their predicted results from different
model are shown in Figures 5 and the predicted squared error in Figure 6.
The results of runs on this case study test data set summarized in Table 3,
according to results shown in Table 3; the productivity of ensemble of models
are better than the single model and the variation between the weighted
average and average combination of ensemble is minor. Scatter plots of
simulation results based on one step data are presented in Figures. 7, 8, and
9. The first shows the results of a one-step-ahead failure forecast using
different ensemble models. The scatter plot with low spread (Fig. 9), and the

low RMSE and high of the one-step-ahead forecast indicate excellent
model performance. Comparing these results with a pervious work, that
implemented the genetic algorithms with single objective function [2], we
found that the performance is enhanced as summarized in Table 4.

Table 4 the comparison among single and multiple objective functions for training data
set using NRMSE value

Training Data Set

multiple objective single objective
single model 4.11e-6 7.61E-06

average ensemble 2.79e-6 5.57E-06
weighted average ensemble 2.66e-6 5.57E-06

38

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

Figure 2 Actual and estimated faults for real time and control application

Figure 3 Prediction error for real time and control application training set

39

Multi-Objective Optimization for Ensemble of Models Aljahdali 1

1

Figure 4 Learning rate of GA for real time and control application

Figure 5 Actual and estimated faults for real time and control application test set

40

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

Figure 6 Prediction error for real time and control application test set

Figure 7 Scatter plot of predicted versus observed failures for on step ahead for real

time and control application

41

Multi-Objective Optimization for Ensemble of Models Aljahdali 1

3

Figure 8 Scatter plot of predicted versus observed failures for on step ahead for real
time and control application

Figure 9 Scatter plot of predicted versus observed failures for on step ahead for real
time and control application

42

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

6- RELATED WORK

Computationally intelligent technologies find its use software engineering
because its focus on system modeling and decision making in the presence of
uncertainty. In the last years many research studies has been carried out in
this area of software reliability modeling and forecasting. They included the
application of neural networks, fuzzy logic models; Genetic algorithms (GA)
based neural networks, recurrent neural networks, particle swarm
optimization (PSO), Bayesian neural networks, and support vector machine
(SVM) based techniques [29]. Aljahdali [1] implement a fuzzy system to
predict the reliability of the software. Cai et al. [5] advocated the development
of fuzzy software reliability models in place of probabilistic software reliability
models (PSRMs). Their argument was based on the proof that software
reliability is fuzzy in nature. A demonstration of how to develop a fuzzy model
to characterize software reliability was also presented. Karunanithi et al. [16]
carried out a detailed study to explain the use of connectionist models in
software reliability growth prediction. It was shown through empirical results
that the connectionist models adapt well across different datasets and exhibit
better predictive accuracy than the well-known analytical software reliability
growth models. Aljahdali et al. [1, 3, 4], made contributions to software
reliability growth prediction using neural networks by predicting accumulated
faults in a determined time interval. They use a feed forward neural network in

which the number of neurons in the input layer represents the number of delay in
the input data. For the experiment, they used 4 delays: , , and ,

representing the number of failures observed in the previous days before . Ho

et al. [13] performed a comprehensive study of connectionist models and their
applicability to software reliability prediction and found them to be better and
more flexible than the traditional models. A comparative study was performed
between their proposed modified Elman recurrent neural network, with the
more popular feed forward neural network, the Jordan recurrent model, and
some traditional software reliability growth models. Numerical results show
that the proposed network architecture performed better than the other
models in terms of predictions. Despite of the recent advancements in the
software reliability growth models, it was observed that different models have
different predictive capabilities and also no single model is suitable under all
circumstances. Tian and Noore [30] proposed an on-line adaptive software
reliability prediction model using evolutionary connectionist approach based
on multiple-delayed-input single-output architecture. The proposed approach,
as shown by their results, had a better performance with respect to next-step
predictability compared to existing neural network model for failure time
prediction. Tian and Noore [29] proposed an evolutionary neural network
modeling approach for software cumulative failure time prediction. Their
results were found to be better than the existing neural network models. It
was also shown that the neural network architecture has a great impact on
the performance of the network. Pai and Hong [23] have applied support
vector machines (SVMs) for forecasting software reliability where simulated
annealing (SA) algorithm was used to select the parameters of the SVM
model. The experimental results show that the proposed model gave better

43

Multi-Objective Optimization for Ensemble of Models Aljahdali
 1

5

predictions than the other compared methods. Su and Huang [28] showed
how to apply neural networks to predict software reliability. Further they made
use of the neural network approach to build a dynamic weighted
combinational model (DWCM) and experimental results show that the
proposed model gave significantly better predictions. Oliveira et al. [21, 22]
proposed the using of genetic programming (GP) to obtain software reliability
model for forecasting the reliability and extended this work by boosting the GP
algorithm using re-weighting. The re-weighting algorithm calls many times the
learning algorithm with assigned weights to each example. Each time, the
weights are computed according to the error (or loss) on each example in the
learning algorithm. In this way, the learning algorithm is manipulated to look
closer at examples with bad prediction functions. Sheta [26] uses genetic
algorithms to estimate the COCOMO model parameters for NASA Software
Projects. The same idea is implemented for estimating the parameters of
different SRGM models using PSO [27]. In this paper, we explore the use of
GA to predict the faults during the software testing process using software
faults historical data. Detailed results are provided to explore the advantages
of using GA in solving this problem.

7- CONCLUSION AND FUTURE WORK

In this work, we have measured the predictability of software reliability using
ensemble of models trained using GA within the multi-objective framework.
The study is applied on real time control study sets. As far as the predictability
of the single AR model and ensemble of AR models trained by GA algorithm
over the trained and test data is concerned, the ensemble of models
performed better the single model. Also, we find that the weighted average
combining method for ensemble has a better performance in a comparison
with average method. This due to the GA learned weights which decide the
contribution of each model in the final results. The use multiple objectives
function enhancing generalization performance of the models predictability.
However these models are linear in the future, we plan to use non-liner
models like neural networks and other form of ensemble combinations.

ACKNOWLEDGEMENT

The author would like to thank Dr. Mohammed El-Telbany, from Electronics
Research Institute, Egypt for reviewing the paper and his valuable comments.

REFERENCES

[1] S. Aljahdali. “Prediction of Software Reliability Using Neural Network and
Fuzzy Logic”, PhD. Thesis, George Mason University, USA.

[2] S. Aljahdali and M. El-Telbany “Genetic Algorithms for Optimizing
Ensemble of Models in Software Reliability Prediction”, In the
International Journal on Artificial Intelligence and machine learning
(AIML), V8 ICGST, 2008.

44

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

[3] S. Aljahdali D. Rine and A. Sheta “Prediction of software reliability: A
comparison between regression and neural network nonparametric
models”, In ACS/IEEE International Conference on Computer Systems
and Applications, Beirut, Lebanon, pp.470–473, 2001.

[4] S. Aljahdali, A. Sheta and D., Rine “Predicting accumulated faults in
software testing process using radial basis function network models”, In
17

th
 International Conference on Computers and Their Applications

(CATA), Special Session on Intelligent Software Reliability, San
Francisco, California, USA, 2002.

[5] K Cai, C. Wen and M. Zhang “A critical review on software reliability
modeling”, Reliability Engineering and System Safety 32 (3), 357–371,
1991.

[6] C. Coello “Evolutionary Multi-Objective Optimization: A Critical Review”,
In Saker et. al., (eds.), Evolutionary Optimization, Kluwer Academic
Publishers, 2003

[7] S. Dehuri, S. Ghosh, A. Ghosh “Genetic Algorithm for Optimization of
Multiple Objectives in Knowledge Discovery from Large Databases”,
Studies in Computational Intelligence, 2008.

[8] S., Dick and A. Kandel “Computational Intelligence in Software Quality
Assurance”, World Scientific Publishing Co. 2005.

[9] T., Dietterich “Ensemble Methods in Machine Learning”, In J. Kittler and
F. Roli, editors, Multiple Classifier Systems, volume 1857 of Lecture
Notes in Computer Science, Cagliari, Italy, Springer, pp. 1–15, 2000.

[10] D. Goldberg “Genetic Algorithms in Search, Optimization, and Machine
Learning”, Addison-Wesley, Boston, Massachusetts, 1989.

[11] K. Goseva-Popstojanova, and K. Trivedi “Failure Correlation in Software
Reliability Models”, IEEE Transactions on Reliability, Vol. 49, No. 1,
March 2000.

[12] S. Hashem, B. Schmeiser and Y. Yih “Optimal Linear Combinations of
Neural Networks: An Overview”. Tech. Rep. SMS93-19, School of
Industrial Engineering, Purdue University. (Proceedings of the 1994 IEEE
International Conference in Neural Networks, 1993.

[13] S. Ho, M. Xie and T. Goh “A study of connectionist models for software
reliability prediction”, Computers and Mathematics with Applications 46
(7), 2003.

[14] J. Holland “Adaption in Natural and Artificial Systems”, University of
Michigan Press, Ann Arbor, Michigan, 1975.

45

Multi-Objective Optimization for Ensemble of Models Aljahdali
 1

7

[15] C. Houck, J. Joines and M. Kay “A Genetic Algorithm for Function
Optimization: A MATLAB Implementation”, ACM Transactions on
Mathematical Software, 1996

[16] N. Karunanithi, D. Whitley and Y. Maliya “Prediction of software reliability
using connectionist models”, IEEE Transactions on Software Engineering
18, 563–574, 1992.

[17] J. Laprie and K. Kanoun “Software Reliability and System Reliability”, In
M. R. Lyu, editor, Handbook of Software Reliability Engineering, pages
27–69. McGraw Hill, 1996

[18] M., Mitchell “An Introduction to Genetic Algorithms”, MIT Press,
Cambridge, Massachusetts, 1996.

[19] J. Musa “A theory of software reliability and its application”. IEEE
Transactions on Software Engineering, pages 312–327, 1975.

[20] J. Musa “Software Reliability Engineering: More Reliable Software, Faster
and Cheaper”, Published Author House, 2004.

[21] E. Oliveira, A. Pozo and S. Vergilio “Using Boosting Techniques to
Improve Software Reliability Models Based on Genetic Programming”, in
Proceedings of the 18

th
 IEEE International Conference on Tools with

Artificial Intelligence

[22] E. Oliveira, C. Silia, A. Pozo and G. Souza “Modeling Software Reliability
Growth with Genetic Programming”, In Proceedings of the 16

th
 IEEE

International Symposium on Software Reliability Engineering, 2005.

[23] P. Pai and W. Hong “Software reliability forecasting by support vector
machines with simulated vector machines with simulated annealing
algorithms”, The Journal of Systems and Software 79, 747-755, 2006

[24] J. Park, S. Lee and J. Park “Neural network modeling for software
reliability prediction from failure time data”, Journal of Electrical
Engineering and Information Science 4:533–538, 1999.

[25] N. Raj Kiran, and V. Ravi “Software Reliability Prediction by Soft
Computing Techniques”, in Journal of Systems Software, 2007.

[26] A. Sheta “Estimation of the COCOMO model parameters using genetic
algorithms for NASA software projects”, Journal of Computer Science,
USA, 2(2):118–123, 2006.

[27] A. Sheta “Reliability growth modeling for software fault detection using
particle swarm optimization”, In 2006 IEEE Congress on Evolutionary
Computation, Sheraton, Vancouver Wall Centre, Vancouver, BC, Canada,
July 16-21, pp. 10428–10435, 2006.

46

Int.J. of Software Engineering, IJSE Vol.2 No.1 January 2009

[28] Y. Su and C. Huang “Neural Network-Based Approaches for Software
Reliability Estimation using Dynamic Weighted Combinational Models”.
Journal of Systems and Software 80 (4), 606–615, 2006.

[29] L. Tian and A. Noore “Computational Intelligence Methods in Software
Reliability Prediction”, in Computational Intelligence in Reliability
Engineering (SCI) 39, 375–398, 2007.

[30] L. Tian and A. Noore “Evolutionary neural network modeling for software
cumulative failure time prediction”, Reliability Engineering and System
Safety 87, 45–51, 2005.

[31] L. Tian and A. Noore “On-line prediction of software reliability using an
evolutionary connectionist model”, The Journal of Systems and Software
77, 173–180, 2005.

[32] M. Xie “Software Reliability Models - Past, Present and Future”, In N.
Limnios and M. Nikulin (Eds). Recent Advances in Reliability Theory:
Methodology, Practice and Inference, 2002.

[33] S., Yamada “Software reliability models and their applications: A survey”,
In International Seminar on Software Reliability of Man-Machine Systems
-Theories Methods and Information Systems Applications, Kyoto
University, Kyoto, Japan, 2000.

