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ABSTRACT 

Software reliability models are very useful to estimate the probability of the 
software fail along the time. Several different models have been proposed to 
predict the software reliability growth models (SRGM) however; none of them 
has proven to perform well considering different project characteristics. The 
variability of predictive accuracy seems mainly due to the unrealistic 
assumptions in each model, there is no single model yet available has been 
shown to be sufficiently trustworthy in most or all applications. Genetic 
Algorithms can proposed the solution by overcome the uncertainties in the 
modeling. This is dependent on the successful software runs by combining 
multiple models using multiple objective function to achieve the best 
generalization performance where. The objectives are conflicting and no 
design exists which can be considered best with respect to all objectives. In 
this paper, experiments were conducted to confirm these hypotheses. Then 
evaluating the predictive capability of the ensemble of models optimized using 
multi-objective GA has been calculated. Finally, the results were compared 
with traditional models. 
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1- INTRODUCTION 

Reliability in the general engineering sense, is the probability. It gives 
component or system in a define environment will operate correctly for a 
specified period of time. Since the software systems permeate every corner of 
modern life, and any failure of those systems impacts us. An important issue 
in developing such software systems is to produce high quality software 
system that satisfies user requirements. As part of the software engineering 
process, developers attempt to gauge the reliability of their software, and 
compare the current level of reliability with the past history of that software. If 
a software system is experiencing fewer failures as time goes on. The 
reliability of that system is said to be growing. Answering two questions of 
when the software should be shipped, and what its reliability will be at that 
time are based on the use of software reliability models. The basic 
assumption in software reliability modeling is that software failures are the 
result of a stochastic process, having an unknown probability distribution. 
Software reliability models specify some reasonable form for this distribution, 
and are fitted to data from a software project. Once a model demonstrates a 
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good fit to the available data, it can be used to determine the current reliability 
of the software, and predict the reliability of the software at future times. The 
problem is that software systems are so complex such that software 
engineers are not currently able to test software well enough to insure its 
correct operation. This may be due to the assumptions made by various 
software reliability models, or due to there is dependence among successive 
software runs. The stochastic dependence of successive software runs also 
depends on the extent to which internal state of software has been affected 
and on the nature of operations undertaken for execution resumption [17, 11]. 
Addressing these problems is: 

1. By finding mechanisms or relationships to more accurately determine 
the quality of software systems, without visiting a large fraction of their 
possible states.  

2. Taking in consideration the failure correlation and; 

3. Considering there is no single model sufficiently trustworthy in most or 
all applications  

Recently many ways of using parametric models, nonlinear time series 
analysis and data mining to model software reliability and quality have been 
investigated. These investigations point the way towards using computational 
intelligence technologies to support human developers in creating software 
systems by exploiting the different forms of uncertainty present in a software 
system results from infrequent and unpredictable occurrence of human errors 
and incomplete or imprecise data, in order to model complex systems and 
support decision making in uncertain environments [8]. These computational 
intelligence methods are evolving collections of methodologies, which adopt 
tolerance for imprecision, uncertainty, and partial truth to obtain robustness, 
tractability, and low cost. Fuzzy logic, neural networks, genetic algorithm, 
genetic programming and evolutionary computation are the most important 
key methodologies.  

In this paper we propose a software reliability modeling framework, based on 
genetic algorithms, as one of the computational intelligence techniques for 
software reliability prediction which is capable of solving the three problems 
listed previously by incorporating the possible dependence among successive 
software run and use ensemble of forecasting models by developing methods 

for estimating the model(s) parameters with multiple and competing objectives, 
through the framework of GA optimizing.  

The rest of the paper is organized in the following manner. In Section 2, the 
genetic algorithms that will be applied in this paper are described briefly. In 
section 3 and 4, we provide an overview of various SRGM and the data set 
which we will be used in this paper. Detailed experiments results are provided 
in section 5. Section 6, a brief review of the works carried out in the area of 
software reliability prediction in research is presented. Finally, Section 7 
concludes the paper. 
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2- GENETIC ALGORITHMS 

Genetic algorithms are machine learning and optimization schemes, much 
like neural networks. However, genetic algorithms do not appear to suffer 
from local minima as badly as neural networks do. Genetic algorithms are 
based on the model of evolution, in which a population evolves towards 
overall fitness, even though individuals perish. Evolution dictates that superior 
individuals have a better chance of reproducing than inferior individuals, and 
thus are more likely to pass their superior traits on to the next generation. This 
“survival of the fittest” criterion was first converted to an optimization algorithm 

by Holland in 1975 [14], and is today a major optimization technique for 

complex, nonlinear problems. In a genetic algorithm, each individual of a 
population is one possible solution to an optimization problem, encoded as a 
binary string called a chromosome. A group of these individuals will be 
generated, and will compete for the right to reproduce or even be carried over 
into the next generation of the population. Competition consists of applying a 
fitness function to every individual in the population; the individuals with the 
best result are the fittest. The next generation will then be constructed by 
carrying over a few of the best individuals, reproduction, and mutation. 
Reproduction is carried out by a “crossover” operation, similar to what 
happens in an animal embryo. Two chromosomes exchange portions of their 

code, thus forming a pair of new individuals. In the simplest form of crossover, 
a crossover point on the two chromosomes is selected at random, and the 
chromosomes exchange all data after that point, while keeping their own data 
up to that point. In order to introduce additional variation in the population, a 
mutation operator will randomly change a bit or bits in some chromosome(s). 
Usually, the mutation rate is kept low to permit good solutions to remain 

stable. The two most critical elements of a genetic algorithm are the way 
solutions are represented, and the fitness function, both of which are problem-
dependent. The coding for a solution must be designed to represent a 
possibly complicated idea or sequence of steps. The fitness function must not 
only interpret the encoding of solutions, but also must establish a ranking of 
different solutions. The fitness function is what will drive the entire population 
of solutions towards a globally best [10]. Figure 1 illustrates the basic steps in 
the canonical genetic algorithms.  

Most GAs has been used for single objective problems, although several 
multi-objective approaches have been proposed. There are three different 
approaches to cope with multi-objective problems, namely: 1) transforming 
the original multi-objective problem into a single objective problem by using a 
weighted function, 2) the lexicographical approach, where the objectives are 
ranked in order of priority, and 3) the Pareto approach which consists of as 
many non-dominated solutions as possible and returning the set of Pareto 
front to the user. The main conclusions are that the weighted formula 
approach, which is by far the most used in the data mining literature, is an ad-
hoc approach for multi-objective optimization, whereas the lexicographic and 
the Pareto approaches are more principled approaches, and therefore 
deserved more attention from the data mining community[7].  
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3- PREDICTING MODELS 

In the past three decades, hundreds of models were introduced to estimate 
the reliability of software systems [32, 33]. The issue of building growth 
models was the subject of many research works [20] which helps in 
estimating the reliability of a software system before its release to the market. 
There appears to be three major trends in software reliability research: the 
use of Non-Homogeneous Poisson Process (NHPP) models, Bayesian 
inference, and time series analysis. An NHPP is a Poisson process with a 
time-varying mean value function. Bayesian inference in software reliability 
models essentially consists of treating the parameters of a reliability model as 
random variables instead of constants to be estimated. Some reasonable 
prior distributions are assumed for these parameters, and Bayes’ theorem is 
then invoked to determine the posterior distributions using reliability data. 
Finally, time series analysis uses an auto-regressive process and an auto-
regressive integrated moving average (ARIMA) model. In addition to these 
three large-scale trends, there are many other proposing software reliability 
models that are somewhat unique. In this paper, the auto-regression models 
are adopted. 

 

Figure 1 the canonical GA algorithm. 
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3-1 REGRESSION MODEL 

A time series is a time-ordered sequence of observation values of a physical 
or financial variable made at equally spaced time intervals , represented as 

a set of discrete values , , ,…, etc. Time series analysis deals with the 

problems of identification of basic characteristic features of time series, as 
well as with discovering - from the observation data on which the time series 
is built - the internal time series structure to predict time series data values 
which help in deciding about the subsequent actions to be taken. One of most 
used times series models is the auto regression model. Much of the appeal of 
this technique lies with its simplicity and also its easy accessibility from many 
of the popular statistical packages. The AR model can be described by the 
following equation: 

 (1) 

where  is the previous observed number of faults and . The 

value of n is referred to as the "order" of the model,  and are 

the model parameter. 

3-2 MULTIPLE REGRESSION MODEL 

Stochastic uncertainty that arises because faults occur during the software 
testing process can behave in many different unpredictable ways and is thus 
a property of reality. Reducing reality into a model inevitably results in an 
error, reflecting the discrepancies between the reality portion of interest and 
its model representation. These errors can be associated with the structure of 
the model stemming from simplifications, assumption and approximations or 
due to uncertainties in the values assumed by the model parameters or due to 
errors in the measurement process itself. This error can be viewed as a 
measure of how good a model is in representing reality. Machine learning 
algorithms, proposed the solution by combining multiple models, we are 
aiming at a more accurate prediction at the expense of increased uncertainty 
[9]. The fusion approach, that will be applied combine such as the average 
predictions of multiple models. Mathematically, the ensemble models can be 
described by the following equation: 

 (2) 

where  is the prediction of the model about a reality aspect of interest,  

represents the model’s structure reflecting a set of assumptions and 

simplifications encoded into the mathematical model , and 

 is a finite set of model parameters. In a general case of a 

discrete set of n models , each model  represents an 

alternate form of  with given set of parameters . Each model in the set 
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 provides an estimate about the quantity of interest  in the form of a 

predictive probability distribution . The literature on 

combining methods is very reach and diverse, among the methods: the 
simple averaging (equal weights) and the weighted average [12]. In this study, 
the combination function is implemented both the schemes, equation 3, 

represent the average predictions of multiple models and equation 4, 
represent the weighted average predictions of multiple models. 

 (3) 

 

 (4) 

4- PROBLEM FORMULATION 

The standard method of performing time series prediction problem can be 
formulated within the supervised machine learning frameworks as the 
following two cases:  

Case 1: Given a set of examples,  where , return 

a function that approximates in the sense that the norm of the error vector 

 is minimized, where each  is defined as  and 

is an arbitrary error function.  

 
Case 2: Given a set of examples,  where , return 

functions that its combination function  

approximates in the sense that the norm of the error vector  is 

minimized, where each  is defined as  and is an 

arbitrary multi-objective function.  

The parameters of any model can be thought as the genes vector or sub-
vector of the chromosome in the GA. The parameters of each chromosome 
vector are initialized randomly and are evolved using GA algorithm. The 
fitness function  that determines the quality of population members is a 

multi-objective function that optimizing several performance index: The value 
of normalized root mean square error (NRMSE) and Correlation Coefficient 

( ) between the observed and forecasted failures. The correlation 

coefficient,  measures the percentage of variation in the dependent 
variable that is explained by the regression or trend line. It has a value 
between zero and one, with a high value indicating a good fit. 
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The objective is to carefully ensemble the different forecasting models to 
achieve the best generalization performance. This task is to have minimal 

values of NRMSE and a maximum value for . This problem is equivalent to 
finding the Pareto solutions of a multi-objective optimization problem. A 
Pareto-optimal solution has the property that it is not possible to reduce any of 
the objective functions without increasing at least one of the other objective 
functions. The most straightforward approach to multi-objective optimization is 
combine all the objectives into a single one using either an addition, 
multiplication or any other combination of arithmetical operations that we 
could devise [6]. Where  

 (7) 

This approach is not computationally intensive and results in a single best 
solution based on the assigned weights. 

5- EXPERIMENTS RESULTS 

This section describes the data used and the measurements adopted to 
evaluate the obtained GA model. We also present the main steps followed to 
configure the GA algorithm. This experiment explored GA models based on 
time. This is easily achieved with an appropriate terminal set. This terminal 
set is compound by past accumulated failures. 

5-1 SOFTWARE RELIABILITY DATA SET 

John Musa of Bell Telephone Laboratories compiled a software reliability 
database [19]. His objective was to collect failure interval data to assist 
software managers in monitoring test status, predicting schedules and to 
assist software researchers in validating software reliability models. These 
models are applied in the discipline of software reliability engineering. The 
dataset consists of software failure data on 16 projects. Careful controls were 
employed during data collection to ensure that the data would be of high 
quality. The data was collected throughout the mid 1970s. It represents 
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projects from a variety of applications including real time command and 
control, word processing, commercial, and military applications. The failure 
data consists of: project identification, failure number; time between failures 
(TBF), and day of occurrence. In our case, we used data from three projects. 
They are Military, Real Time Control and Operating System. 

5-2 REGRESSION MODELS STRUCTURES AND TRAINING 

We implemented the standard genetic algorithms using MATLAB with binary 
representations where the population contains a set of represented model(s) 
parameters. Hence, a chromosome is a set of parameters, where each 
parameters represented by 10 bits. The parameters take the values between 
[0, 1]. Initial chromosomes are generated by random bit strings. The 
architecture of the regression model used for prediction the software reliability 
is modeled as in Equation 1; with . For multiple models we combine the 

three models with . The chosen orders of AR models are simples to 

implement the principles of parsimony. The goal of the genetic algorithm is to 
naturally select using roulette wheel selection technique, the model(s) that 
better solves a predication problem using fitness function as in Equation 5. 
We use the conventional genetic operators to produce new generation of 
population of chromosomes from current generation. The genetic algorithms 
are learned to estimate the models parameters and their combining weights. 
The trainings accomplish by dividing the data set into two sections, training 
and test sets, comprising of 70% and 30% of the total data set respectively. 
So, we took the first 96 data points for training and the next 40 points for 
validation and test. The GA training algorithms are conducted several pre-
experiments to determine the parameters setting per algorithm that yields the 
best performance with respect to the dataset. These parameters are values 
are shown in Table 1. 

Table 1 the GA parameters used in this study 

Parameter Value 

Population Size 25 

Number of generations 1000 

Crossover rate 0.6 

Mutation rate 0.05 

Selection method tournament selection 

5-3 EXPERIMENTAL EVALUATION 

The training data from real time control and their predicted results from 
different model are shown in Figures 2 and the predicted squared error in 
Figure 3. The forecasted and actually measured values where compared to 
verify the generated models by GA learning algorithm. From this figure it can 
be observed that the weighted average ensemble of models forecast more 
closely to the actual values than other modeling methodologies in most of the 
testing time period. The results of runs on this case study training data set 
summarized in Table 2 in terms of multi-objective function. According to 
results shown in Table 2; the ensemble of models are better than the single 
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model and the variation between the weighted average and average 
combination of ensemble is minor. The above results show that AR ensemble 
models performance can be very dependent on the ability of optimization 
algorithms to find a good set of parameters. The better performance can be 
illustrated by showing the learning curves of the parameters of the proposed 
methodology as shown in Figures 4. 

Table 2 the comparison among single and ensemble of models learned using GA for 

training data set 

Training Data Set   

NRMSE R
2
 

single model 3.87e-6 0.93 
average ensemble 3.46e-6 0.99 

weighted average ensemble 3.44e-6 0.99 

 

Table 3 the comparison among single and ensemble of models learned using GA for 
testing data set 

Testing Data Set   

NRMSE R
2
 

single model 4.11e-6 0.97 
average ensemble 2.79e-6 0.98 
weighted average ensemble 2.66e-6 1.00 

The test data from real time control and their predicted results from different 
model are shown in Figures 5 and the predicted squared error in Figure 6.  
The results of runs on this case study test data set summarized in Table 3, 
according to results shown in Table 3; the productivity of ensemble of models 
are better than the single model and the variation between the weighted 
average and average combination of ensemble is minor. Scatter plots of 
simulation results based on one step data are presented in Figures. 7, 8, and 
9. The first shows the results of a one-step-ahead failure forecast using 
different ensemble models. The scatter plot with low spread (Fig. 9), and the 

low RMSE and high  of the one-step-ahead forecast indicate excellent 
model performance. Comparing these results with a pervious work, that 
implemented the genetic algorithms with single objective function [2], we 
found that the performance is enhanced as summarized in Table 4.  

Table 4 the comparison among single and multiple objective functions for training data 
set using NRMSE value 

Training Data Set   

multiple objective single objective 
single model 4.11e-6 7.61E-06 

average ensemble 2.79e-6 5.57E-06 
weighted average ensemble 2.66e-6 5.57E-06 
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Figure 2 Actual and estimated faults for real time and control application  

 

 

Figure 3 Prediction error for real time and control application training set 
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Figure 4 Learning rate of GA for real time and control application 

 

 

Figure 5 Actual and estimated faults for real time and control application test set 
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Figure 6 Prediction error for real time and control application test set 

 

 

Figure 7 Scatter plot of predicted versus observed failures for on step ahead for real 

time and control application 
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Figure 8 Scatter plot of predicted versus observed failures for on step ahead for real 
time and control application 

 

 

Figure 9 Scatter plot of predicted versus observed failures for on step ahead for real 
time and control application 
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6- RELATED WORK 

Computationally intelligent technologies find its use software engineering 
because its focus on system modeling and decision making in the presence of 
uncertainty. In the last years many research studies has been carried out in 
this area of software reliability modeling and forecasting. They included the 
application of neural networks, fuzzy logic models; Genetic algorithms (GA) 
based neural networks, recurrent neural networks, particle swarm 
optimization (PSO), Bayesian neural networks, and support vector machine 
(SVM) based techniques [29].  Aljahdali [1] implement a fuzzy system to 
predict the reliability of the software. Cai et al. [5] advocated the development 
of fuzzy software reliability models in place of probabilistic software reliability 
models (PSRMs). Their argument was based on the proof that software 
reliability is fuzzy in nature. A demonstration of how to develop a fuzzy model 
to characterize software reliability was also presented. Karunanithi et al. [16] 
carried out a detailed study to explain the use of connectionist models in 
software reliability growth prediction. It was shown through empirical results 
that the connectionist models adapt well across different datasets and exhibit 
better predictive accuracy than the well-known analytical software reliability 
growth models. Aljahdali et al. [1, 3, 4], made contributions to software 
reliability growth prediction using neural networks by predicting accumulated 
faults in a determined time interval. They use a feed forward neural network in 

which the number of neurons in the input layer represents the number of delay in 
the input data. For the experiment, they used 4 delays: , ,  and , 

representing the number of failures observed in the previous days before . Ho 

et al. [13] performed a comprehensive study of connectionist models and their 
applicability to software reliability prediction and found them to be better and 
more flexible than the traditional models. A comparative study was performed 
between their proposed modified Elman recurrent neural network, with the 
more popular feed forward neural network, the Jordan recurrent model, and 
some traditional software reliability growth models. Numerical results show 
that the proposed network architecture performed better than the other 
models in terms of predictions. Despite of the recent advancements in the 
software reliability growth models, it was observed that different models have 
different predictive capabilities and also no single model is suitable under all 
circumstances. Tian and Noore [30] proposed an on-line adaptive software 
reliability prediction model using evolutionary connectionist approach based 
on multiple-delayed-input single-output architecture. The proposed approach, 
as shown by their results, had a better performance with respect to next-step 
predictability compared to existing neural network model for failure time 
prediction. Tian and Noore [29] proposed an evolutionary neural network 
modeling approach for software cumulative failure time prediction. Their 
results were found to be better than the existing neural network models. It 
was also shown that the neural network architecture has a great impact on 
the performance of the network. Pai and Hong [23] have applied support 
vector machines (SVMs) for forecasting software reliability where simulated 
annealing (SA) algorithm was used to select the parameters of the SVM 
model. The experimental results show that the proposed model gave better 
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predictions than the other compared methods. Su and Huang [28] showed 
how to apply neural networks to predict software reliability. Further they made 
use of the neural network approach to build a dynamic weighted 
combinational model (DWCM) and experimental results show that the 
proposed model gave significantly better predictions. Oliveira et al. [21, 22] 
proposed the using of genetic programming (GP) to obtain software reliability 
model for forecasting the reliability and extended this work by boosting the GP 
algorithm using re-weighting. The re-weighting algorithm calls many times the 
learning algorithm with assigned weights to each example. Each time, the 
weights are computed according to the error (or loss) on each example in the 
learning algorithm. In this way, the learning algorithm is manipulated to look 
closer at examples with bad prediction functions. Sheta [26] uses genetic 
algorithms to estimate the COCOMO model parameters for NASA Software 
Projects. The same idea is implemented for estimating the parameters of 
different SRGM models using PSO [27]. In this paper, we explore the use of 
GA to predict the faults during the software testing process using software 
faults historical data. Detailed results are provided to explore the advantages 
of using GA in solving this problem. 

7- CONCLUSION AND FUTURE WORK 

In this work, we have measured the predictability of software reliability using 
ensemble of models trained using GA within the multi-objective framework. 
The study is applied on real time control study sets. As far as the predictability 
of the single AR model and ensemble of AR models trained by GA algorithm 
over the trained and test data is concerned, the ensemble of models 
performed better the single model. Also, we find that the weighted average 
combining method for ensemble has a better performance in a comparison 
with average method. This due to the GA learned weights which decide the 
contribution of each model in the final results. The use multiple objectives 
function enhancing generalization performance of the models predictability. 
However these models are linear in the future, we plan to use non-liner 
models like neural networks and other form of ensemble combinations.  
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